Plant-inspired multi stimuli and multi temporal morphing composites
Plants are inspiring models for adaptive, morphing systems. In addition to their shape complexity, they can respond to multiple stimuli and exhibit both fast and slow motion. We attempt to recreate these capabilities in synthetic structures, proposing a fabrication and design scheme for multi stimul...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/157092 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-157092 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1570922022-05-06T06:09:19Z Plant-inspired multi stimuli and multi temporal morphing composites Le Ferrand, Hortense Riley, Katherine S. Arrieta, Andres F. School of Mechanical and Aerospace Engineering Engineering::Materials Bioinspired Morphing Plants are inspiring models for adaptive, morphing systems. In addition to their shape complexity, they can respond to multiple stimuli and exhibit both fast and slow motion. We attempt to recreate these capabilities in synthetic structures, proposing a fabrication and design scheme for multi stimuli and multi temporal responsive plant-inspired composites. We leverage a hierarchical, spatially tailored microstructural and compositional scheme to enable both fast morphing through bistability and slow morphing through diffusion processes. The composites consisted of a hydrogel layer made of gelatine and an architected particle-reinforced epoxy bilayer. Using magnetic fields to achieve spatially distributed orientations of magnetically responsive platelets in each epoxy layer, complex bilayer architectural patterns in various geometries were realised. This feature enabled the study of plant-inspired complex designs, via finite element analysis and experiments. We present the design and fabrication strategy utilizing the material properties of the composites. The deformations and temporal responses of the resulting composites are analysed using digital image correlation. Finally, we model and experimentally demonstrate plant-inspired composite shells whose stable shapes closely mimic those of the Venus flytrap, while maintaining the multi stimuli and multi temporal responses of the materials. The key to achieve this is to tune the local in plane orientations of the reinforcing particles in the bilayer shapes, to induce distributed in plane mechanical properties and shrinkage. How these particles should be distributed is determined using finite element modelling. The work presented in this study can be applied to autonomous applications such as robotic systems. Ministry of Education (MOE) Submitted/Accepted version The authors acknowledge financial support from Ministry of Education, Singapore under Grant No. 2019-T1-001-002, and the Helen and John Lozar Assistantship through the School of Mechanical Engineering at Purdue University. 2022-05-06T06:08:26Z 2022-05-06T06:08:26Z 2022 Journal Article Le Ferrand, H., Riley, K. S. & Arrieta, A. F. (2022). Plant-inspired multi stimuli and multi temporal morphing composites. Bioinspiration & Biomimetics. https://dx.doi.org/10.1088/1748-3190/ac61ea 1748-3182 https://hdl.handle.net/10356/157092 10.1088/1748-3190/ac61ea en 2019-T1-001-002 Bioinspiration & Biomimetics © 2022 IOP Publishing Ltd. All rights reserved. This is an author-created, un-copyedited version of an article accepted for publication in Bioinspiration & Biomimetics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at https://doi.org/10.1088/1748-3190/ac61ea. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Materials Bioinspired Morphing |
spellingShingle |
Engineering::Materials Bioinspired Morphing Le Ferrand, Hortense Riley, Katherine S. Arrieta, Andres F. Plant-inspired multi stimuli and multi temporal morphing composites |
description |
Plants are inspiring models for adaptive, morphing systems. In addition to their shape complexity, they can respond to multiple stimuli and exhibit both fast and slow motion. We attempt to recreate these capabilities in synthetic structures, proposing a fabrication and design scheme for multi stimuli and multi temporal responsive plant-inspired composites. We leverage a hierarchical, spatially tailored microstructural and compositional scheme to enable both fast morphing through bistability and slow morphing through diffusion processes. The composites consisted of a hydrogel layer made of gelatine and an architected particle-reinforced epoxy bilayer. Using magnetic fields to achieve spatially distributed orientations of magnetically responsive platelets in each epoxy layer, complex bilayer architectural patterns in various geometries were realised. This feature enabled the study of plant-inspired complex designs, via finite element analysis and experiments. We present the design and fabrication strategy utilizing the material properties of the composites. The deformations and temporal responses of the resulting composites are analysed using digital image correlation. Finally, we model and experimentally demonstrate plant-inspired composite shells whose stable shapes closely mimic those of the Venus flytrap, while maintaining the multi stimuli and multi temporal responses of the materials. The key to achieve this is to tune the local in plane orientations of the reinforcing particles in the bilayer shapes, to induce distributed in plane mechanical properties and shrinkage. How these particles should be distributed is determined using finite element modelling. The work presented in this study can be applied to autonomous applications such as robotic systems. |
author2 |
School of Mechanical and Aerospace Engineering |
author_facet |
School of Mechanical and Aerospace Engineering Le Ferrand, Hortense Riley, Katherine S. Arrieta, Andres F. |
format |
Article |
author |
Le Ferrand, Hortense Riley, Katherine S. Arrieta, Andres F. |
author_sort |
Le Ferrand, Hortense |
title |
Plant-inspired multi stimuli and multi temporal morphing composites |
title_short |
Plant-inspired multi stimuli and multi temporal morphing composites |
title_full |
Plant-inspired multi stimuli and multi temporal morphing composites |
title_fullStr |
Plant-inspired multi stimuli and multi temporal morphing composites |
title_full_unstemmed |
Plant-inspired multi stimuli and multi temporal morphing composites |
title_sort |
plant-inspired multi stimuli and multi temporal morphing composites |
publishDate |
2022 |
url |
https://hdl.handle.net/10356/157092 |
_version_ |
1734310301903355904 |