Photoacoustic imaging aided with deep learning: a review
Photoacoustic imaging (PAI) is an emerging hybrid imaging modality integrating the benefits of both optical and ultrasound imaging. Although PAI exhibits superior imaging capabilities, its translation into clinics is still hindered by various limitations. In recent years, deeplearning (DL), a new pa...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/157117 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Photoacoustic imaging (PAI) is an emerging hybrid imaging modality integrating the benefits of both optical and ultrasound imaging. Although PAI exhibits superior imaging capabilities, its translation into clinics is still hindered by various limitations. In recent years, deeplearning (DL), a new paradigm of machine learning, is gaining a lot of attention due to its ability to improve medical images. Likewise, DL is also widely being used in PAI to overcome some of the limitations of PAI. In this review, we provide a comprehensive overview on the various DL techniques employed in PAI along with its promising advantages. |
---|