Machine learning models on demodulation of FBG sensors

Pressure, acceleration, vibration, strain, and temperature are all often measured with Fiber Bragg Grating (FBG) sensors. Spectral overlapping in the wavelength domain can occur in a multiplexed FBG network. The main difficulty that will be explored in this project is demodulating a single FBG...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Cheok, Jake Ke Jun
مؤلفون آخرون: Wong Liang Jie
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2022
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/157513
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Pressure, acceleration, vibration, strain, and temperature are all often measured with Fiber Bragg Grating (FBG) sensors. Spectral overlapping in the wavelength domain can occur in a multiplexed FBG network. The main difficulty that will be explored in this project is demodulating a single FBG wave from a made by mixing spectrum. To determine the center Bragg wavelengths of each detector in the overlapping condition, the lowest technique, linear regression used in this project. With a root mean square error of 0.21 pm and an average testing duration of 0.8 milliseconds, a 30 layers residual