Housing price prediction using sequence transformers

The objective of this project is to create a forecast of Singapore’s housing prices using a dataset that includes prices of Housing and Development Board (HDB) flats over 5-10 years. The machine learning technique used in this research will be Sequence Transformers which is often used in Natural Lan...

Full description

Saved in:
Bibliographic Details
Main Author: Muhammad Aidil Goh Jalil
Other Authors: Soh Yeng Chai
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2022
Subjects:
Online Access:https://hdl.handle.net/10356/157538
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The objective of this project is to create a forecast of Singapore’s housing prices using a dataset that includes prices of Housing and Development Board (HDB) flats over 5-10 years. The machine learning technique used in this research will be Sequence Transformers which is often used in Natural Language Processing (NLP). The paper applies the multi-layer attention layer, which improves processing time by parallelizing input data. The Transformer model allows for a bigger dataset to be used as compared to Recurrent Neural Network (RNN) tools such as Long-Short Term Memory (LSTM). Therefore, this project aims to test the feasibility of using Sequence Transformers by validating the output with loss functions by comparing training loss to validation loss.