To develop online PD monitoring system for TX XLPE cable joint without external power supply (phase 3)

Partial Discharge (PD) monitoring is often conducted on cables that are put under high voltage stress. This plays a salient role in determining cable insulation quality and reducing the occurrence of insulation breakdown. As such, the cables in transmission and distribution networks are frequentl...

全面介紹

Saved in:
書目詳細資料
主要作者: Low, Daniel Boon Howe
其他作者: Foo Yi Shyh Eddy
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2022
主題:
在線閱讀:https://hdl.handle.net/10356/157543
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Partial Discharge (PD) monitoring is often conducted on cables that are put under high voltage stress. This plays a salient role in determining cable insulation quality and reducing the occurrence of insulation breakdown. As such, the cables in transmission and distribution networks are frequently monitored to examine the state of cable insulation degradation. These test results can be used to predict and determine the lifespan of the cable insulation and even determine the phasing out of equipment due to compromised insulation. PD monitoring devices have to be powered up using electricity from the grid or power sources like batteries. These batteries need to be changed constantly when the energy stored in them has been depleted. Therefore, the suggested solution is to substitute the batteries with an alternative power source capable of generating the energy needed for powering up a PD monitoring device. Currently, the suggested alternative are the neighboring Cross-Linked Polyethylene Cables (TX XLPE) of the tested TX XLPE cable. Refer to Appendix A for more information on TX XLPE cables. With the designed electromagnetic induction device tested functionally by the previous student, this Final Year Project aims to investigate the feasibility of converting the induced Alternating Current (AC) to a stable Direct Current (DC) that can be used to power up the PD monitoring device. This report will focus on topics such as PD monitoring devices, voltage regulatory circuits, buck-boost circuits and improvements to the electromagnetic induction device to reduce the power fluctuation by stabilizing the device during the harnessing of power from the TX XLPE cable. This report aims to provide readers with various insights on regulating electrical power to the desired level depending on the intended usage.