Design of A 3-5 um and 8-12 um two-color InGaN/AlGaN quantum well infrared photo-detector

Thermal imaging technology is the cornerstone of military and civil technology. Two-color infrared photodetectors working in mid-wavelength infrared (MWIR, 3 μm-5 μm) and long-wavelength infrared (LWIR, 8 μm-12 μm) band receive significant attention. The excellent optoelectronic and physicochemical...

全面介紹

Saved in:
書目詳細資料
主要作者: Yang, Yuhui
其他作者: Fan Weijun
格式: Thesis-Master by Coursework
語言:English
出版: Nanyang Technological University 2022
主題:
在線閱讀:https://hdl.handle.net/10356/157569
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Thermal imaging technology is the cornerstone of military and civil technology. Two-color infrared photodetectors working in mid-wavelength infrared (MWIR, 3 μm-5 μm) and long-wavelength infrared (LWIR, 8 μm-12 μm) band receive significant attention. The excellent optoelectronic and physicochemical properties make it possible for group-III nitride quantum well to fabricate two-color infrared photodetector. However, the component and well width of group-III nitride that can accomplish the two-color detection have not been investigated. In this case, this project utilizes the 8-band model, firstly calculates the transition energy from E1 to E2 and therefore finds the desired component and well width; secondly, these parameters are optimized according to Q_TE curves and Q_TM curves. Finally, Al0.1Ga0.9N/In0.3Ga0.7N (with well width 31 Å and 60 Å) is determined to be the optimal quantum wells.