Li-ion battery aging test & data analytics

With the rising popularity of Li-ion batteries, the ability to attain accurate estimation of the battery core and surface temperature is of crucial importance to ensure the operational performance, safety, and reliability usage of Li-ion batteries. Impedance-based and data-driven based temperat...

Full description

Saved in:
Bibliographic Details
Main Author: Sim, Xiao Hui
Other Authors: Xu Yan
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2022
Subjects:
Online Access:https://hdl.handle.net/10356/157723
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:With the rising popularity of Li-ion batteries, the ability to attain accurate estimation of the battery core and surface temperature is of crucial importance to ensure the operational performance, safety, and reliability usage of Li-ion batteries. Impedance-based and data-driven based temperature estimation gaining substantial popularity in recent years because of their sensorless estimation characteristic and lower modeling complexity, this study proposes to study a hybrid model of impedance-based temperature estimation method with Stochastic Configuration Network (SCN) approach. To further explore on the accuracy performance of SCN, the model will be compared against Artificial Neural Network (ANN) and Support Vector Regression (SVR). The performance of the models will then be assessed in terms of root mean square error (RMSE) and mean absolute error (MAE).