Deep disentangling learning for real-world image enlightening and restoration
Shadow removal is a vital image processing operation that can enlighten the illumination of shadow regions in an image. This application can elevate the accuracy and robustness of high-level computer vision tasks especially those which are heavily deep learning (DL) based (e.g., object detection, pe...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/157792 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-157792 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1577922023-07-07T19:09:04Z Deep disentangling learning for real-world image enlightening and restoration Chan, Yi Xuan Wen Bihan School of Electrical and Electronic Engineering bihan.wen@ntu.edu.sg Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision Shadow removal is a vital image processing operation that can enlighten the illumination of shadow regions in an image. This application can elevate the accuracy and robustness of high-level computer vision tasks especially those which are heavily deep learning (DL) based (e.g., object detection, person surveillance, and vehicle tracking). Implementation of shadow removal on image or video data can mitigate the risk of unexpected fallouts in computer vision algorithms. In this Final Year Project (FYP), the prime goal is to devise a potent DL-based shadow removal algorithm that can effectively remove shadows in images without leaving any boundary trace. A comprehensive ablation study is done to investigate the effectiveness of loss functions and network modules in our proposed architecture. Quantitative and qualitative analysis show that not only our proposed model achieving comparable performance in the removal of shadow, but the final output images also have the best reconstruction image quality among the other existing shadow removal methods. Bachelor of Engineering (Electrical and Electronic Engineering) 2022-05-23T11:22:30Z 2022-05-23T11:22:30Z 2022 Final Year Project (FYP) Chan, Y. X. (2022). Deep disentangling learning for real-world image enlightening and restoration. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/157792 https://hdl.handle.net/10356/157792 en application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision |
spellingShingle |
Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision Chan, Yi Xuan Deep disentangling learning for real-world image enlightening and restoration |
description |
Shadow removal is a vital image processing operation that can enlighten the illumination of shadow regions in an image. This application can elevate the accuracy and robustness of high-level computer vision tasks especially those which are heavily deep learning (DL) based (e.g., object detection, person surveillance, and vehicle tracking). Implementation of shadow removal on image or video data can mitigate the risk of unexpected fallouts in computer vision algorithms.
In this Final Year Project (FYP), the prime goal is to devise a potent DL-based shadow removal algorithm that can effectively remove shadows in images without leaving any boundary trace. A comprehensive ablation study is done to investigate the effectiveness of loss functions and network modules in our proposed architecture. Quantitative and qualitative analysis show that not only our proposed model achieving comparable performance in the removal of shadow, but the final output images also have the best reconstruction image quality among the other existing shadow removal methods. |
author2 |
Wen Bihan |
author_facet |
Wen Bihan Chan, Yi Xuan |
format |
Final Year Project |
author |
Chan, Yi Xuan |
author_sort |
Chan, Yi Xuan |
title |
Deep disentangling learning for real-world image enlightening and restoration |
title_short |
Deep disentangling learning for real-world image enlightening and restoration |
title_full |
Deep disentangling learning for real-world image enlightening and restoration |
title_fullStr |
Deep disentangling learning for real-world image enlightening and restoration |
title_full_unstemmed |
Deep disentangling learning for real-world image enlightening and restoration |
title_sort |
deep disentangling learning for real-world image enlightening and restoration |
publisher |
Nanyang Technological University |
publishDate |
2022 |
url |
https://hdl.handle.net/10356/157792 |
_version_ |
1772825903367192576 |