Determining human intention in videos I

Human intention is a temporal sequence of human actions to achieve a goal. Determining human intentions is highly useful in many situations. It can enable better human-robot collaboration whereby robots are required to help human users. It is also useful in analysing human behaviours in dynamic env...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Hoong, Jia Qi
مؤلفون آخرون: Cham Tat Jen
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2022
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/158063
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Human intention is a temporal sequence of human actions to achieve a goal. Determining human intentions is highly useful in many situations. It can enable better human-robot collaboration whereby robots are required to help human users. It is also useful in analysing human behaviours in dynamic environment, such as monitoring mobile patients in hospitals or monitoring athletes in tournaments. In this work, we focus on predicting future action from past observations in egocentric videos. This is known as egocentric action anticipation. Egocentric videos are videos that record the human actions in a first-person perspective. This research shall analyse a deep learning framework proposed by Furnari and Farinella [1]. The framework is a multimodal network consisting of (1) Rolling-Unrolling LSTM models for anticipating actions from egocentric videos using multi-modal features and (2) a Modality ATTention (MATT) mechanism for fusing multi-modal predictions. Moreover, the multimodal network shall be extended on other modalities, specifically using monocular depth for egocentric action anticipation.