Object detection using artificial intelligence

Computer vision technology is changing the way people live. One important issue of computer vision is object detection which is the basis for high-level semantic information analysis of images. The objective of the object detection is to detect all items of the predefined classes and provide its loc...

Full description

Saved in:
Bibliographic Details
Main Author: Wang, Tian
Other Authors: Yap Kim Hui
Format: Thesis-Master by Coursework
Language:English
Published: Nanyang Technological University 2022
Subjects:
Online Access:https://hdl.handle.net/10356/158911
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Computer vision technology is changing the way people live. One important issue of computer vision is object detection which is the basis for high-level semantic information analysis of images. The objective of the object detection is to detect all items of the predefined classes and provide its localization by bounding boxes. It is a supervised learning problem. Object detection has many applications like face detection, vehicle detection, people counting, security and surveillance and so on. Integrating object detection technology into factory management has many benefits. It could help to monitor safety protection, improve production efficiency, control product quality and so on. Therefore, in my dissertation, I did detailed literature review of state of the art object detectors and did a comparison of the common methods. I also chose YOLOv5 as the candidate methods and did more evaluation of its models. At the same time, we made our own dataset including 3069 images and most of which were collected from the factory environment. After that, I trained YOLOv5 models on custom dataset on Google Colab and got excellent result. I also did some visualization and analysis of the the result and proposed some directions to improve the models in the future.