Next generation e-drivetrain for automated mobile robot (AMR) with regenerative braking system (RBS)
Automated Mobile Robots (AMR) are high technology devices that can move autonomously from one place to another to perform the tasks required. They have become more popular as technology advanced in recent years to help humanity perform tasks in a more efficient and safer manner. As new technologies...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/159010 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Automated Mobile Robots (AMR) are high technology devices that can move autonomously from one place to another to perform the tasks required. They have become more popular as technology advanced in recent years to help humanity perform tasks in a more efficient and safer manner. As new technologies are constantly being innovated, there are problems arisen that are linked to the emission of greenhouse gases because of the energy sources used. One of the sustainable solutions to slow global warming was the introduction of Electric Vehicles (EV) with Regenerative Braking System (RBS). RBS provides an ability to recover the vehicle’s kinetic energy during deceleration to improve fuel economy significantly. So far there are examples of RBS being built for large-sized vehicles, however, downsized, cost-efficient by-wire system and its generative braking control algorithm that are designed for AMRs have rarely been reported.
Therefore, in this project, it aims to study the novel system design and control of Regenerative Braking System (RBS) which was originated from Electric Vehicles (EV) and incorporated it into AMRs. The system and control will be studied in MATLAB and Simulink. This project is in collaboration with Schaeffler-NTU joint Lab and hence, the RBS would be designed for Schaeffler AMRs.
This research is supported by the Agency for Science, Technology and Research (A*STAR) under its IAF-ICP Programme ICP1900093 and the Schaeffler Hub for Advanced Research at Nanyang Technological University. |
---|