Probabilistic forecasting of residential load power for smart home
Due to the stochastic nature of occupants’ behaviors, forecasting individual household-level residential load for smart home has been a challenging problem. This paper proposes a probabilistic residential load power forecasting method for smart home considering three aspects: deep-learning-based poi...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis-Master by Coursework |
Language: | English |
Published: |
Nanyang Technological University
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/159025 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Due to the stochastic nature of occupants’ behaviors, forecasting individual household-level residential load for smart home has been a challenging problem. This paper proposes a probabilistic residential load power forecasting method for smart home considering three aspects: deep-learning-based point-forecasting of residential load, prediction intervals to estimate the load uncertainties, and non-intrusive load monitoring (NILM). |
---|