Composite fabrication using slip casting

A novel approach for producing periodically structured assemblies of dense ceramics was recently devised and implemented. This approach, known as magnetically assisted slip casting (MASC), allows for the manipulation of ceramic micro-platelets in a slurry using rotating magnets, resulting in the cap...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Ng, Zheng Hao
مؤلفون آخرون: Hortense Le Ferrand
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2022
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/159085
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:A novel approach for producing periodically structured assemblies of dense ceramics was recently devised and implemented. This approach, known as magnetically assisted slip casting (MASC), allows for the manipulation of ceramic micro-platelets in a slurry using rotating magnets, resulting in the capacity to construct the required microstructure. The complex microstructures in natural ceramic composites contribute to convoluted fracture patterns, which contribute to their exceptional toughness. Current micro reinforced composites' microstructures have yet to achieve the same level of complexity, resulting in poorer qualities. To achieve a complex microstructure, MASC ceramic green bodies with step feature microstructure were fabricated to study the capabilities and limits of MASC-fabricated structures. The fabricated ceramic green bodies were infiltrated with a polymer matrix to simulate the biopolymeric mortar found in the nacre microstructure. A compression test was performed on samples with step features of varying sizes, and their mechanical performance was compared. The findings reveal that a sufficiently prominent step feature improves the stiffness of the material while retaining other mechanical characteristics such as strength, and ductility. This study is critical in understanding MASC's ability to produce composites with the complex microstructure present in natural ceramic composites and with comparable properties.