Long-wavelength fluctuations and dimensionality crossover in confined liquids
The phase behavior of liquids confined in a slit geometry does not reveal a crossover from a three- to a two-dimensional behavior as the gap size decreases. Indeed, the prototypical two-dimensional hexatic phase only occurs in liquids confined to a monolayer. Here, we demonstrate that the dimensiona...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/159297 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The phase behavior of liquids confined in a slit geometry does not reveal a crossover from a three- to a two-dimensional behavior as the gap size decreases. Indeed, the prototypical two-dimensional hexatic phase only occurs in liquids confined to a monolayer. Here, we demonstrate that the dimensionality crossover is apparent in the lateral size dependence of the relaxation dynamics of confined liquids, developing a Debye model for the density of vibrational states of confined systems and performing extensive numerical simulations. In confined systems, Mermin-Wagner fluctuations enhance the amplitude of vibrational motion - or the Debye-Waller factor - by a quantity scaling as the inverse gap width and proportional to the logarithm of the aspect ratio, as a clear signature of a two-dimensional behavior. As the temperature or lateral system size increases, the crossover to a size-independent relaxation dynamics occurs when structural relaxation takes place before the vibrational modes with the longest wavelength develop. |
---|