Chiral 2D-perovskite nanowires for stokes photodetectors
Structural engineering in multiple scales permits the integration of exotic properties into a single material, which boosts the development of ultracompact multifunctional devices. Layered perovskites are capable of cross-linking efficient carrier transport originating from few-layer perovskite fram...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/159345 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Structural engineering in multiple scales permits the integration of exotic properties into a single material, which boosts the development of ultracompact multifunctional devices. Layered perovskites are capable of cross-linking efficient carrier transport originating from few-layer perovskite frameworks with extended functionalities contributed by designable bulky organic cations and nanostructures, thus providing a platform for multiscale material engineering. Herein, high-performance Stokes-parameter photodetectors for arbitrary polarized light detection are realized on the basis of solution-processed chiral-perovskite nanowire arrays. The chiral ammonium cations intercalated between the perovskite layers are responsive to circularly polarized light with a maximum anisotropy factor of 0.15, while the strictly aligned nanowires with the anisotropic dielectric function result in a large polarized ratio of 1.6 to linearly polarized light. Single crystallinity and pure crystallographic orientation permit efficient in-plane carrier transport along the nanowires, yielding a responsivity of 47.1 A W-1 and a detectivity of 1.24 × 1013 Jones. By synergy of linear- and circular-polarization response with high optoelectronic performance for providing sufficient photocurrent contrasts, Stokes-parameter photodetection is demonstrated on these nanowires. Our Stokes-parameter photodetectors with a small footprint and high performances present promising applications toward polarization imaging. |
---|