High dimensional finite elements for two-scale Maxwell wave equations
We develop an essentially optimal numerical method for solving two-scale Maxwell wave equations in a domain D⊂Rd. The problems depend on two scales: one macroscopic scale and one microscopic scale. Solving the macroscopic two-scale homogenized problem, we obtain the desired macroscopic and microscop...
Saved in:
Main Authors: | Chu, Van Tiep, Hoang, Viet Ha |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/159512 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Sparse tensor product high dimensional finite elements for two-scale mixed problems
由: Chu, Van Tiep, et al.
出版: (2022) -
High-dimensional finite elements for multiscale Maxwell-type equations
由: Chu, Van Tiep, et al.
出版: (2017) -
Multiscale maxwell equations : homogenization and high dimensional finite element method
由: Chu, Van Tiep
出版: (2016) -
High dimensional finite elements for multiscale wave equations
由: Xia, Bingxing, et al.
出版: (2015) -
Reduced complexity Viterbi detection for two-dimensional optical recording
由: Huang, L., et al.
出版: (2014)