WiFi-vision enabled identification via multi-modal gait recognition

This paper proposes GaitFi, a novel multi-modal gait recognition method, which uses WiFi signals and videos for human identification.

Saved in:
Bibliographic Details
Main Author: Deng, Lang
Other Authors: Xie Lihua
Format: Thesis-Master by Coursework
Language:English
Published: Nanyang Technological University 2022
Subjects:
Online Access:https://hdl.handle.net/10356/159528
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-159528
record_format dspace
spelling sg-ntu-dr.10356-1595282022-06-27T08:11:53Z WiFi-vision enabled identification via multi-modal gait recognition Deng, Lang Xie Lihua School of Electrical and Electronic Engineering ELHXIE@ntu.edu.sg Engineering::Electrical and electronic engineering::Computer hardware, software and systems Engineering::Electrical and electronic engineering::Electronic systems::Signal processing This paper proposes GaitFi, a novel multi-modal gait recognition method, which uses WiFi signals and videos for human identification. Master of Science (Computer Control and Automation) 2022-06-23T01:06:26Z 2022-06-23T01:06:26Z 2022 Thesis-Master by Coursework Deng, L. (2022). WiFi-vision enabled identification via multi-modal gait recognition. Master's thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/159528 https://hdl.handle.net/10356/159528 en application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Electrical and electronic engineering::Computer hardware, software and systems
Engineering::Electrical and electronic engineering::Electronic systems::Signal processing
spellingShingle Engineering::Electrical and electronic engineering::Computer hardware, software and systems
Engineering::Electrical and electronic engineering::Electronic systems::Signal processing
Deng, Lang
WiFi-vision enabled identification via multi-modal gait recognition
description This paper proposes GaitFi, a novel multi-modal gait recognition method, which uses WiFi signals and videos for human identification.
author2 Xie Lihua
author_facet Xie Lihua
Deng, Lang
format Thesis-Master by Coursework
author Deng, Lang
author_sort Deng, Lang
title WiFi-vision enabled identification via multi-modal gait recognition
title_short WiFi-vision enabled identification via multi-modal gait recognition
title_full WiFi-vision enabled identification via multi-modal gait recognition
title_fullStr WiFi-vision enabled identification via multi-modal gait recognition
title_full_unstemmed WiFi-vision enabled identification via multi-modal gait recognition
title_sort wifi-vision enabled identification via multi-modal gait recognition
publisher Nanyang Technological University
publishDate 2022
url https://hdl.handle.net/10356/159528
_version_ 1736856400023257088