Synthetic recrystalization matrix for converting coal ash into value added product

Coal ash has been recognized as a hazardous industrial waste due to its high concentration of toxic heavy metals. It is been produced in large quantities by burning of coal in thermal power stations for electrical purpose. Increasing massive amount of coal ash is forecasted, large amount of land is...

Full description

Saved in:
Bibliographic Details
Main Author: Ong, Khiaw Chong.
Other Authors: Sun Delai, Darren
Format: Final Year Project
Language:English
Published: 2009
Subjects:
Online Access:http://hdl.handle.net/10356/15963
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-15963
record_format dspace
spelling sg-ntu-dr.10356-159632023-03-03T17:03:00Z Synthetic recrystalization matrix for converting coal ash into value added product Ong, Khiaw Chong. Sun Delai, Darren School of Civil and Environmental Engineering DRNTU::Engineering::Environmental engineering::Waste management Coal ash has been recognized as a hazardous industrial waste due to its high concentration of toxic heavy metals. It is been produced in large quantities by burning of coal in thermal power stations for electrical purpose. Increasing massive amount of coal ash is forecasted, large amount of land is needed to be used for coal ash disposal sites. Moreover, the toxic contaminants will leach out to the surrounding areas causing environmental impact. Human health is greatly endangered as exposure to coal combustion waste has a ninety-nine times higher chance of having cancer than smoking a packet of cigarette each day. Eventually, coal ash will lead to both financial and environmental burdens. Utilization of coal ash in producing glass ceramic is a sustainable solution to the problems. While coal ash is being recycled for glass ceramic, there is great significant value addition as glass ceramic shows good mechanical properties and chemical resistance which is good for industrial usage. The hazardous high concentrations of heavy metals are also being immobilized chemical and physical in the glass ceramic. Moreover, different microstructure and properties of glass ceramic can be produced based on the composition of coal ash used. Experimental work has been carried out using coal ash to produce glass ceramic. Other raw materials used include sodium hydroxide, aluminium nitrate and waste glass. It is realized that all raw materials must be readily prepared in powder form and evenly mixed for good reaction and possible glass ceramic production. Produced glass ceramic shows attractive appearance and good heavy metal immobilization characteristic. It also shows great potential to stabilize other hazardous industrial wastes in its glass ceramic structure both chemically and physically. However, no crystalline phase is detected which means improvement must made for the controlled heat treatment so nucleation and crystallization are possible. Bachelor of Engineering (Environmental Engineering) 2009-05-19T08:05:38Z 2009-05-19T08:05:38Z 2009 2009 Final Year Project (FYP) http://hdl.handle.net/10356/15963 en Nanyang Technological University 51 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Environmental engineering::Waste management
spellingShingle DRNTU::Engineering::Environmental engineering::Waste management
Ong, Khiaw Chong.
Synthetic recrystalization matrix for converting coal ash into value added product
description Coal ash has been recognized as a hazardous industrial waste due to its high concentration of toxic heavy metals. It is been produced in large quantities by burning of coal in thermal power stations for electrical purpose. Increasing massive amount of coal ash is forecasted, large amount of land is needed to be used for coal ash disposal sites. Moreover, the toxic contaminants will leach out to the surrounding areas causing environmental impact. Human health is greatly endangered as exposure to coal combustion waste has a ninety-nine times higher chance of having cancer than smoking a packet of cigarette each day. Eventually, coal ash will lead to both financial and environmental burdens. Utilization of coal ash in producing glass ceramic is a sustainable solution to the problems. While coal ash is being recycled for glass ceramic, there is great significant value addition as glass ceramic shows good mechanical properties and chemical resistance which is good for industrial usage. The hazardous high concentrations of heavy metals are also being immobilized chemical and physical in the glass ceramic. Moreover, different microstructure and properties of glass ceramic can be produced based on the composition of coal ash used. Experimental work has been carried out using coal ash to produce glass ceramic. Other raw materials used include sodium hydroxide, aluminium nitrate and waste glass. It is realized that all raw materials must be readily prepared in powder form and evenly mixed for good reaction and possible glass ceramic production. Produced glass ceramic shows attractive appearance and good heavy metal immobilization characteristic. It also shows great potential to stabilize other hazardous industrial wastes in its glass ceramic structure both chemically and physically. However, no crystalline phase is detected which means improvement must made for the controlled heat treatment so nucleation and crystallization are possible.
author2 Sun Delai, Darren
author_facet Sun Delai, Darren
Ong, Khiaw Chong.
format Final Year Project
author Ong, Khiaw Chong.
author_sort Ong, Khiaw Chong.
title Synthetic recrystalization matrix for converting coal ash into value added product
title_short Synthetic recrystalization matrix for converting coal ash into value added product
title_full Synthetic recrystalization matrix for converting coal ash into value added product
title_fullStr Synthetic recrystalization matrix for converting coal ash into value added product
title_full_unstemmed Synthetic recrystalization matrix for converting coal ash into value added product
title_sort synthetic recrystalization matrix for converting coal ash into value added product
publishDate 2009
url http://hdl.handle.net/10356/15963
_version_ 1759858140045639680