Large-scale heteroscedastic regression via Gaussian process
Heteroscedastic regression considering the varying noises among observations has many applications in the fields, such as machine learning and statistics. Here, we focus on the heteroscedastic Gaussian process (HGP) regression that integrates the latent function and the noise function in a unified n...
Saved in:
Main Authors: | Liu, Haitao, Ong, Yew-Soon, Cai, Jianfei |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/159646 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Fast transfer Gaussian process regression with large-scale sources
由: Da, Bingshui, et al.
出版: (2020) -
Remarks on multi-output Gaussian process regression
由: Liu, Haitao, et al.
出版: (2020) -
Understanding and comparing scalable Gaussian process regression for big data
由: Liu, Haitao, et al.
出版: (2020) -
Some methods for comparing heteroscedastic regression models
由: WU HAO
出版: (2011) -
When Gaussian process meets big data : a review of scalable GPs
由: Liu, Haitao, et al.
出版: (2021)