Biochar and hydrochar derived from freshwater sludge: characterization and possible applications

Freshwater sludge (FS) is generated in large quantities during the production of drinking water every day. It is largely underutilized, and has long been filter pressed to sludge cake and then disposed of in landfills. The search for more economical and sustainable disposal or reuse options is urgen...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Yunhui, Qin, Junde, Yi, Yaolin
Other Authors: School of Civil and Environmental Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/159707
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Freshwater sludge (FS) is generated in large quantities during the production of drinking water every day. It is largely underutilized, and has long been filter pressed to sludge cake and then disposed of in landfills. The search for more economical and sustainable disposal or reuse options is urgently needed. Biochar and hydrochar are increasingly popular wastes derived materials with huge potential for soil improvement, environmental remediation, and mitigation of climate change, but there is a lack of research on the production of FS derived biochar and hydrochar. In this study, biochar was produced by pyrolysis at 300, 500 or 700 °C for 1 h, and hydrochar was produced by hydrothermal carbonization (HTC) at 140, 160, 180 or 200 °C for 4 h. Proximate analyses show that the biochar has a higher carbon stability and is possibly suitable for carbon sequestration, while the hydrochar contains more labile carbon structures. The ultimate analysis indicates that the surface hydrophobicity is in the order of: biochar > hydrochar > FS. The phytotoxicity tests indicate their positive effects on germination of wheat seeds. This study provides a new treatment to reuse numerous FS and put forward the possible applications of its carbonaceous products, which is expected to facilitate a circular economy and realize the zero-waste target.