Unique sums and differences in finite Abelian groups
Let A,B be subsets of a finite abelian group G. Suppose that A+B does not contain a unique sum, i.e., there is no g∈G with a unique representation g=a+b, a∈A, b∈B. From such sets A,B, sparse linear systems over the rational numbers arise. We obtain a new determinant bound on invertible submatrices o...
محفوظ في:
المؤلفون الرئيسيون: | , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/159769 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | Let A,B be subsets of a finite abelian group G. Suppose that A+B does not contain a unique sum, i.e., there is no g∈G with a unique representation g=a+b, a∈A, b∈B. From such sets A,B, sparse linear systems over the rational numbers arise. We obtain a new determinant bound on invertible submatrices of the coefficient matrices of these linear systems. Under the condition that |A|+|B| is small compared to the order of G, these bounds provide essential information on the Smith Normal Form of these coefficient matrices. We use this information to prove that A and B admit coset partitions whose parts have properties resembling those of A and B. As a consequence, we improve previously known sufficient conditions for the existence of unique sums in A+B and show how our structural results can be used to classify sets A and B for which A+B does not contain a unique sum when |A|+|B| is relatively small. Our method also can be applied to subsets of abelian groups which have no unique differences. |
---|