On the compression of translation operator tensors in FMM-FFT-accelerated SIE simulators via tensor decompositions

Tensor decomposition methodologies are proposed to reduce the memory requirement of translation operator tensors arising in the fast multipole method-fast Fourier transform (FMM-FFT)-accelerated surface integral equation (SIE) simulators. These methodologies leverage Tucker, hierarchical Tucker...

全面介紹

Saved in:
書目詳細資料
Main Authors: Qian, Cheng, Yucel, Abdulkadir C.
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/159775
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Tensor decomposition methodologies are proposed to reduce the memory requirement of translation operator tensors arising in the fast multipole method-fast Fourier transform (FMM-FFT)-accelerated surface integral equation (SIE) simulators. These methodologies leverage Tucker, hierarchical Tucker (H-Tucker), and tensor train (TT) decompositions to compress the FFT'ed translation operator tensors stored in three-dimensional (3D) and four-dimensional (4D) array formats. Extensive numerical tests are performed to demonstrate the memory saving achieved by and computational overhead introduced by these methodologies for different simulation parameters. Numerical results show that the H-Tucker-based methodology for 4D array format yields the maximum memory saving while Tucker-based methodology for 3D array format introduces the minimum computational overhead. For many practical scenarios, all methodologies yield a significant reduction in the memory requirement of translation operator tensors while imposing negligible/acceptable computational overhead.