Constructions of Butson Hadamard matrices invariant under Abelian p-groups
Let a and h be positive integers and let p be a prime. Let q1,…,qt be the distinct prime divisors of h and write Q(h)={∑i=1tciqi:ci∈Z,ci≥0}. We provide constructions of group invariant Butson Hadamard matrices BH(G,h) in the following cases. 1. G=(Zp)2a and at least one of the following conditions i...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/159805 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-159805 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1598052022-07-04T01:46:29Z Constructions of Butson Hadamard matrices invariant under Abelian p-groups Schmidt, Bernhard Wong, Dai Quan Xiang, Qing School of Physical and Mathematical Sciences Science::Mathematics Group Invariant Matrices Orthogonal Matrices Let a and h be positive integers and let p be a prime. Let q1,…,qt be the distinct prime divisors of h and write Q(h)={∑i=1tciqi:ci∈Z,ci≥0}. We provide constructions of group invariant Butson Hadamard matrices BH(G,h) in the following cases. 1. G=(Zp)2a and at least one of the following conditions is satisfied. • pa∈Q(h), • pa+2∈Q(h) and h is even, • pa+1=(q1−1)(q2−1) where q1 and q2 are distinct prime divisors of h. 2. G=Zpa×Zpa and p−1,p∈Q(h). 3. G=(Zp2)a and pb∈Q(h) for some divisor b of a with 1≤b<a. 4. G=P×Zpa where P is any abelian group of order pa and p∈Q(h). 2022-07-04T01:46:29Z 2022-07-04T01:46:29Z 2021 Journal Article Schmidt, B., Wong, D. Q. & Xiang, Q. (2021). Constructions of Butson Hadamard matrices invariant under Abelian p-groups. Journal of Combinatorial Theory, Series A, 181, 105433-. https://dx.doi.org/10.1016/j.jcta.2021.105433 0097-3165 https://hdl.handle.net/10356/159805 10.1016/j.jcta.2021.105433 2-s2.0-85100678635 181 105433 en Journal of Combinatorial Theory, Series A © 2021 Elsevier Inc. All rights reserved. |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Science::Mathematics Group Invariant Matrices Orthogonal Matrices |
spellingShingle |
Science::Mathematics Group Invariant Matrices Orthogonal Matrices Schmidt, Bernhard Wong, Dai Quan Xiang, Qing Constructions of Butson Hadamard matrices invariant under Abelian p-groups |
description |
Let a and h be positive integers and let p be a prime. Let q1,…,qt be the distinct prime divisors of h and write Q(h)={∑i=1tciqi:ci∈Z,ci≥0}. We provide constructions of group invariant Butson Hadamard matrices BH(G,h) in the following cases. 1. G=(Zp)2a and at least one of the following conditions is satisfied. • pa∈Q(h), • pa+2∈Q(h) and h is even, • pa+1=(q1−1)(q2−1) where q1 and q2 are distinct prime divisors of h. 2. G=Zpa×Zpa and p−1,p∈Q(h). 3. G=(Zp2)a and pb∈Q(h) for some divisor b of a with 1≤b<a. 4. G=P×Zpa where P is any abelian group of order pa and p∈Q(h). |
author2 |
School of Physical and Mathematical Sciences |
author_facet |
School of Physical and Mathematical Sciences Schmidt, Bernhard Wong, Dai Quan Xiang, Qing |
format |
Article |
author |
Schmidt, Bernhard Wong, Dai Quan Xiang, Qing |
author_sort |
Schmidt, Bernhard |
title |
Constructions of Butson Hadamard matrices invariant under Abelian p-groups |
title_short |
Constructions of Butson Hadamard matrices invariant under Abelian p-groups |
title_full |
Constructions of Butson Hadamard matrices invariant under Abelian p-groups |
title_fullStr |
Constructions of Butson Hadamard matrices invariant under Abelian p-groups |
title_full_unstemmed |
Constructions of Butson Hadamard matrices invariant under Abelian p-groups |
title_sort |
constructions of butson hadamard matrices invariant under abelian p-groups |
publishDate |
2022 |
url |
https://hdl.handle.net/10356/159805 |
_version_ |
1738844826616463360 |