Deep anomaly detection for time-series data in industrial IoT: a communication-efficient on-device federated learning approach

Since edge device failures (i.e., anomalies) seriously affect the production of industrial products in Industrial IoT (IIoT), accurately and timely detecting anomalies is becoming increasingly important. Furthermore, data collected by the edge device may contain the user's private data, whic...

全面介紹

Saved in:
書目詳細資料
Main Authors: Liu, Yi, Garg, Sahil, Nie, Jiangtian, Zhang, Yang, Xiong, Zehui, Kang, Jiawen, Hossain, M. Shamim
其他作者: School of Computer Science and Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/159853
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!