Brunnian braids over the 2-sphere and Artin combed form
Finding homotopy group of spheres is an old open problem in topology. Berrick et al. derive in [A. J. Berrick, F. Cohen, Y. L. Wong and J. Wu, Configurations, braids, and homotopy groups, J. Amer. Math. Soc. 19 (2006)] an exact sequence that relates Brunnian braids to homotopy groups of spheres. We...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/160042 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Finding homotopy group of spheres is an old open problem in topology. Berrick et al. derive in [A. J. Berrick, F. Cohen, Y. L. Wong and J. Wu, Configurations, braids, and homotopy groups, J. Amer. Math. Soc. 19 (2006)] an exact sequence that relates Brunnian braids to homotopy groups of spheres. We give an interpretation of this exact sequence based on the combed form for braids over the sphere developed in [R. Gillette and J. V. Buskirk, The word problem and consequences for the braid groups and mapping class groups of the two-sphere, Trans. Amer. Math. Soc. 131 (1968) 277-296] with the aim of helping one to visualize the sequence and to do calculations based on it. |
---|