3D printing and chemical dealloying of a hierarchically micro- and nanoporous catalyst for wastewater purification

Hierarchically porous-structured materials show tremendous potential for catalytic applications. In this work, a facile method through the combination of three-dimensional (3D) printing and chemical dealloying was employed to synthesize a nanoporous-copper-encapsulating microporous-diamond-cellular-...

Full description

Saved in:
Bibliographic Details
Main Authors: Cai, Chao, Guo, Sheng, Li, Boyuan, Tian, Yujia, Qiu, Jasper Chua Dong, Sun, Chen-Nan, Yan, Chunze, Qi, H. Jerry, Zhou, Kun
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/160089
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Hierarchically porous-structured materials show tremendous potential for catalytic applications. In this work, a facile method through the combination of three-dimensional (3D) printing and chemical dealloying was employed to synthesize a nanoporous-copper-encapsulating microporous-diamond-cellular-structure (NPC@DCS) catalyst. The developed NPC@DCS catalyst was utilized as a heterogeneous photo-Fenton-like catalyst where its catalytic applications in the remediation of organic wastewater were exemplified. The experimental results demonstrated that the NPC@DCS catalyst possessed a remarkable degradation efficiency in the removal of rhodamine B with a reaction rate of 8.24 × 10-2 min-1 and displayed attractive stability, durability, mineralization capability, and versatility. This work not only manifests the applicability of the proposed NPC@DCS catalyst for wastewater purification in practical applications but also is anticipated to inspire the incorporation of the 3D printing technology and chemical synthesis to design high-performance metal catalysts with tunable hierarchical micro- and nanopores for functional applications.