Effects of all-organic interlayer surface modifiers on the efficiency and stability of perovskite solar cells

Surface imperfections created during fabrication of halide perovskite (HP) films could induce formation of various defect sites that affect device performance and stability. In this work, all-organic surface modifiers consisting of alkylammonium cations and alkanoate anions are introduced on top of...

Full description

Saved in:
Bibliographic Details
Main Authors: Foong, Joseph Japheth Yeow Wan, Febriansyah, Benny, Rana, Prem Jyoti Singh, Koh, Teck Ming, Tay, Darrell Jun Jie, Bruno, Annalisa, Mhaisalkar, Subodh Gautam, Mathews, Nripan
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/160184
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Surface imperfections created during fabrication of halide perovskite (HP) films could induce formation of various defect sites that affect device performance and stability. In this work, all-organic surface modifiers consisting of alkylammonium cations and alkanoate anions are introduced on top of the HP layer to passivate interfacial vacancies and improve moisture tolerance. Passivation using alkylammonium alkanoate does not induce formation of low-dimensional perovskites species. Instead, the organic species only passivate the perovskite's surface and grain boundaries, which results in enhanced hydrophobic character of the HP films. In terms of photovoltaic application, passivation with alkylammonium alkanoate allows significant reduction in recombination losses and enhancement of open-circuit voltage. Alongside unchanged short-circuit current density, power conversion efficiencies of more than 18.5 % can be obtained from the treated sample. Furthermore, the unencapsulated device retains 85 % of its initial PCE upon treatment, whereas the standard 3D perovskite device loses 50 % of its original PCE when both are subjected to ambient environment over 1500 h.