Synthesis and characterization of palladium nanoparticles-corannulene nanocomposite: an anode electrocatalyst for direct oxidation of methanol in alkaline medium
Herein a facile route to anchor transition metal nanoparticles on a bowl-shaped carbon material has been described to prepare a novel nanocomposite as an anode electrode for fuel cell applications. To accomplish this, palladium nanoparticles (PdNPs) have been electrochemically decorated on corannule...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/160248 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Herein a facile route to anchor transition metal nanoparticles on a bowl-shaped carbon material has been described to prepare a novel nanocomposite as an anode electrode for fuel cell applications. To accomplish this, palladium nanoparticles (PdNPs) have been electrochemically decorated on corannulene-based curved carbon material. The proposed catalyst was structurally and morphologically characterized by various techniques. The performance of the catalyst was evaluated by electrochemical techniques such as CV, EIS, LSV, and CA. The PdNPs@Corannulene catalyst shows high MOR activity of 102.1 mA/cm2 in an alkaline medium and good stability when compared with most of the reported Pd-based catalysts and Pd/C. The developed electrocatalyst exhibited a high surface area, good current density, excellent anti-poisoning ability, and superior catalytic activity towards methanol oxidation. The results presented herein revealed that molecularly curved carbon-corannulene as a novel support material in the design of nanostructured catalysts will open a new avenue for high-performance fuel cell applications. |
---|