Phonetic-enriched text representation for Chinese sentiment analysis with reinforcement learning

The Chinese pronunciation system offers two characteristics that distinguish it from other languages: deep phonemic orthography and intonation variations. In this paper, we hypothesize that these two important properties can play a major role in Chinese sentiment analysis. In particular, we propose...

Full description

Saved in:
Bibliographic Details
Main Authors: Peng, Haiyun, Ma, Yukun, Poria, Soujanya, Li, Yang, Cambria, Erik
Other Authors: School of Computer Science and Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/160266
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The Chinese pronunciation system offers two characteristics that distinguish it from other languages: deep phonemic orthography and intonation variations. In this paper, we hypothesize that these two important properties can play a major role in Chinese sentiment analysis. In particular, we propose two effective features to encode phonetic information and, hence, fuse it with textual information. With this hypothesis, we propose Disambiguate Intonation for Sentiment Analysis (DISA), a network that we develop based on the principles of reinforcement learning. DISA disambiguates intonations for each Chinese character (pinyin) and, hence, learns precise phonetic representations. We also fuse phonetic features with textual and visual features to further improve performance. Experimental results on five different Chinese sentiment analysis datasets show that the inclusion of phonetic features significantly and consistently improves the performance of textual and visual representations and surpasses the state-of-the-art Chinese character-level representations.