Stack operation of tensor networks
The tensor network, as a facterization of tensors, aims at performing the operations that are common for normal tensors, such as addition, contraction and stacking. However, due to its non-unique network structure, only the tensor network contraction is so far well defined. In this paper, we prop...
Saved in:
Main Authors: | , , , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/160356 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
總結: | The tensor network, as a facterization of tensors, aims at performing the
operations that are common for normal tensors, such as addition, contraction
and stacking. However, due to its non-unique network structure, only the tensor
network contraction is so far well defined. In this paper, we propose a
mathematically rigorous definition for the tensor network stack approach, that
compress a large amount of tensor networks into a single one without changing
their structures and configurations. We illustrate the main ideas with the
matrix product states based machine learning as an example. Our results are
compared with the for loop and the efficient coding method on both CPU and GPU. |
---|