Predicting the interaction biomolecule types for lncRNA: an ensemble deep learning approach

Long noncoding RNAs (lncRNAs) play significant roles in various physiological and pathological processes via their interactions with biomolecules like DNA, RNA and protein. The existing in silico methods used for predicting the functions of lncRNA mainly rely on calculating the similarity of lncRNA...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Yu, Jia, Cangzhi, Kwoh, Chee Keong
Other Authors: School of Computer Science and Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/160384
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Long noncoding RNAs (lncRNAs) play significant roles in various physiological and pathological processes via their interactions with biomolecules like DNA, RNA and protein. The existing in silico methods used for predicting the functions of lncRNA mainly rely on calculating the similarity of lncRNA or investigating whether an lncRNA can interact with a specific biomolecule or disease. In this work, we explored the functions of lncRNA from a different perspective: we presented a tool for predicting the interaction biomolecule type for a given lncRNA. For this purpose, we first investigated the main molecular mechanisms of the interactions of lncRNA-RNA, lncRNA-protein and lncRNA-DNA. Then, we developed an ensemble deep learning model: lncIBTP (lncRNA Interaction Biomolecule Type Prediction). This model predicted the interactions between lncRNA and different types of biomolecules. On the 5-fold cross-validation, the lncIBTP achieves average values of 0.7042 in accuracy, 0.7903 and 0.6421 in macro-average area under receiver operating characteristic curve and precision-recall curve, respectively, which illustrates the model effectiveness. Besides, based on the analysis of the collected published data and prediction results, we hypothesized that the characteristics of lncRNAs that interacted with DNA may be different from those that interacted with only RNA.