Effect of polydispersity on bubble characteristics of Geldart Group B particles

In order to enhance the understanding of the influences of bubble characteristics in bubbling fluidized beds of Gaussian and lognormal particle size distributions (PSDs) of Geldart Group B particles, machine learning tools were harnessed. The PSDs had the same Sauter-mean diameter and widths (i.e.,...

Full description

Saved in:
Bibliographic Details
Main Authors: Chew, Jia Wei, Cocco, Ray A.
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/160433
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In order to enhance the understanding of the influences of bubble characteristics in bubbling fluidized beds of Gaussian and lognormal particle size distributions (PSDs) of Geldart Group B particles, machine learning tools were harnessed. The PSDs had the same Sauter-mean diameter and widths (i.e., ratio of standard deviation to Sauter-mean diameter) of between 10 and 30% and 10 – 70%, respectively. Self-organizing maps (SOMs) analysis of more than a thousand data rows each of Gaussian and lognormal PSD data indicate that bubble velocity, frequency, length, and probability are highly correlated. The optimal number of data assemblies that either the Gaussian or lognormal dataset can be divided into per the Calinski-Harabasz criterion was determined to be three, and it was found that the critical parameter that underlies the demarcation of the datasets was PSD width. This agrees with an earlier study on clusters, wherein the non-monodispersity of the particle systems was also responsible for the division of the dataset into distinct data assemblies. Furthermore, the number-based frequency of the particle species was better correlated with the bubbles than the mass-based one. The key highlight is the predominant influence of PSD width in demarcating the datasets into distinct data assemblies, which underscores the need to account for the polydispersity of particle systems and provides valuable insights towards model development.