Combined anomaly detection framework for digital twins of water treatment facilities

Digital twins of cyber‐physical systems with automated process control systems using programmable logic controllers (PLCs) are increasingly popular nowadays. At the same time, cyber-physical security is also a growing concern with system connectivity. This study develops a combined anomaly detection...

Full description

Saved in:
Bibliographic Details
Main Authors: Wei, Yuying, Law, Adrian Wing-Keung, Yang, Chun, Tang, Di
Other Authors: School of Civil and Environmental Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/160609
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-160609
record_format dspace
spelling sg-ntu-dr.10356-1606092022-07-30T20:11:56Z Combined anomaly detection framework for digital twins of water treatment facilities Wei, Yuying Law, Adrian Wing-Keung Yang, Chun Tang, Di School of Civil and Environmental Engineering Interdisciplinary Graduate School (IGS) School of Mechanical and Aerospace Engineering Nanyang Environment and Water Research Institute Environmental Process Modelling Centre Engineering::Civil engineering Anomaly Detection Digital Twin Digital twins of cyber‐physical systems with automated process control systems using programmable logic controllers (PLCs) are increasingly popular nowadays. At the same time, cyber-physical security is also a growing concern with system connectivity. This study develops a combined anomaly detection framework (CADF) against various types of security attacks on the digital twin of process control in water treatment facilities. CADF utilizes the PLC‐based whitelist system to detect anomalies that target the actuators and the deep learning approach of natural gradient boosting (NGBoost) and probabilistic assessment to detect anomalies that target the sensors. The effectiveness of CADF is verified using a physical facility for water treatment with membrane processes called the Secure Water Treatment (SWaT) system in the Singapore University of Technology and Design. Various attack scenarios are tested in SWaT by falsifying the reported values of sensors and actuators in the digital twin process. These scenarios include both trivial attacks, which are commonly studied, as well as non‐trivial (i.e., sophisticated) attacks, which are rarely reported. The results show that CADF performs very well with good detection accuracy in all scenarios, and par-ticularly, it is able to detect all sophisticated attacks while ongoing before they can induce damage to the water treatment facility. CADF can be further extended to other cyber‐physical systems in the future. National Research Foundation (NRF) Published version This research was funded by the National Research Foundation (NRF), Prime Minister’s Office, Singapore, under its National Cybersecurity R&D Programme and administered by the National Satellite of Excellence in Design Science and Technology for Secure Critical Infrastructure, Award No. NSoE_DeST-SCI2019-0011. 2022-07-27T08:25:33Z 2022-07-27T08:25:33Z 2022 Journal Article Wei, Y., Law, A. W., Yang, C. & Tang, D. (2022). Combined anomaly detection framework for digital twins of water treatment facilities. Water, 14(7), 1001-. https://dx.doi.org/10.3390/w14071001 2073-4441 https://hdl.handle.net/10356/160609 10.3390/w14071001 2-s2.0-85127540434 7 14 1001 en NSoE_DeST-SCI2019-0011 Water © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Civil engineering
Anomaly Detection
Digital Twin
spellingShingle Engineering::Civil engineering
Anomaly Detection
Digital Twin
Wei, Yuying
Law, Adrian Wing-Keung
Yang, Chun
Tang, Di
Combined anomaly detection framework for digital twins of water treatment facilities
description Digital twins of cyber‐physical systems with automated process control systems using programmable logic controllers (PLCs) are increasingly popular nowadays. At the same time, cyber-physical security is also a growing concern with system connectivity. This study develops a combined anomaly detection framework (CADF) against various types of security attacks on the digital twin of process control in water treatment facilities. CADF utilizes the PLC‐based whitelist system to detect anomalies that target the actuators and the deep learning approach of natural gradient boosting (NGBoost) and probabilistic assessment to detect anomalies that target the sensors. The effectiveness of CADF is verified using a physical facility for water treatment with membrane processes called the Secure Water Treatment (SWaT) system in the Singapore University of Technology and Design. Various attack scenarios are tested in SWaT by falsifying the reported values of sensors and actuators in the digital twin process. These scenarios include both trivial attacks, which are commonly studied, as well as non‐trivial (i.e., sophisticated) attacks, which are rarely reported. The results show that CADF performs very well with good detection accuracy in all scenarios, and par-ticularly, it is able to detect all sophisticated attacks while ongoing before they can induce damage to the water treatment facility. CADF can be further extended to other cyber‐physical systems in the future.
author2 School of Civil and Environmental Engineering
author_facet School of Civil and Environmental Engineering
Wei, Yuying
Law, Adrian Wing-Keung
Yang, Chun
Tang, Di
format Article
author Wei, Yuying
Law, Adrian Wing-Keung
Yang, Chun
Tang, Di
author_sort Wei, Yuying
title Combined anomaly detection framework for digital twins of water treatment facilities
title_short Combined anomaly detection framework for digital twins of water treatment facilities
title_full Combined anomaly detection framework for digital twins of water treatment facilities
title_fullStr Combined anomaly detection framework for digital twins of water treatment facilities
title_full_unstemmed Combined anomaly detection framework for digital twins of water treatment facilities
title_sort combined anomaly detection framework for digital twins of water treatment facilities
publishDate 2022
url https://hdl.handle.net/10356/160609
_version_ 1739837451982077952