Microstructure and mechanical behavior of laser aided additive manufactured low carbon interstitial Fe₄₉.₅Mn₃₀Co₁₀Cr₁₀C₀.₅ multicomponent alloy

Laser aided additive manufacturing (LAAM) was used to fabricate bulk Fe49.5Mn30Co10Cr10C0.5 interstitial multicomponent alloy using pre-alloyed powder. The room temperature yield strength (σy), ultimate tensile strength (σUTS) and elongation (εUTS) were 645 MPa, 917 MPa and 27.0 % respectively. The...

全面介紹

Saved in:
書目詳細資料
Main Authors: Chew, Youxiang, Zhu, Zhiguang, Weng, Fei, Gao, Shubo, Ng, Fern Lan, Lee, Bing Yang, Bi, Guijun
其他作者: School of Mechanical and Aerospace Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/160634
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Laser aided additive manufacturing (LAAM) was used to fabricate bulk Fe49.5Mn30Co10Cr10C0.5 interstitial multicomponent alloy using pre-alloyed powder. The room temperature yield strength (σy), ultimate tensile strength (σUTS) and elongation (εUTS) were 645 MPa, 917 MPa and 27.0 % respectively. The as-built sample consisted of equiaxed and dendritic cellular structures formed by elemental segregation. These cellular structures together with oxide particle inclusions were deemed to strengthen the material. The other contributing components include dislocation strengthening, friction stress and grain boundary strengthening. The high εUTS was attributed to dislocation motion and activation of both twinning and transformation-induced plasticity (TWIP and TRIP). Tensile tests performed at −40 °C and −130 °C demonstrated superior tensile strength of 1041 MPa and 1267 MPa respectively. However, almost no twinning was observed in the fractured sample tested at −40 °C and −130 °C. Instead, higher fraction of strain-induced hexagonal close-packed (HCP) ε phase transformation of 21.2 % were observed for fractured sample tested at −40 °C, compared with 6.3 % in fractured room temperature sample.