Air passenger forecasting using Neural Granger causal Google trend queries

Air passenger forecasting provides important insights for both Governments and Aerospace industries to plan their for their future activities. Google Trends can provide a large database of historical search query frequency which can be used as explanatory variables for air passenger forecasting. Thi...

Full description

Saved in:
Bibliographic Details
Main Authors: Long, Chan Li, Guleria, Yash, Alam, Sameer
Other Authors: Air Traffic Management Research Institute
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/160638
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Air passenger forecasting provides important insights for both Governments and Aerospace industries to plan their for their future activities. Google Trends can provide a large database of historical search query frequency which can be used as explanatory variables for air passenger forecasting. This paper explores the use of a Neural Granger Causality model to select the best search query that can forecast arrival air passengers in Singapore Changi Airport. Neural Granger Causality models are an extension of the original Granger Causality model that uses neural networks instead of Linear Vector Auto-Regressive (VAR) models to capture non-linear relations between the targets and the tested explanatory variables. In this paper, 1317 Google Trends search queries are tested for Neural Granger Causality of which 171 queries are deemed as Neural Granger Causal for forecasting Singapore Changi Airport monthly arrival passengers. The model that used all 171 Neural Granger Queries achieved the highest R2 value (R2=0.919) with the lowest Standard Deviation (SD=0.363) compared to the other models which was not filtered for Neural Granger Causality. The 171 queries found are search terms that reflects a unidirectional neural granger causal relationship with the number of arrival air passengers at Changi Airport.