Molecule confined isolated metal sites enable the electrocatalytic synthesis of hydrogen peroxide
The direct synthesis of hydrogen peroxide (H2 O2 ) through the two-electron oxygen reduction reaction is a promising alternative to the industrial anthraquinone oxidation process. Selectivity to H2 O2 is however limited by the four-electron pathway during oxygen reduction. Herein, it is reported tha...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/160708 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The direct synthesis of hydrogen peroxide (H2 O2 ) through the two-electron oxygen reduction reaction is a promising alternative to the industrial anthraquinone oxidation process. Selectivity to H2 O2 is however limited by the four-electron pathway during oxygen reduction. Herein, it is reported that aminoanthraquinone confined isolated metal sites on carbon supports selectively steer oxygen reduction to H2 O2 through the two-electron pathway. Confining isolated NiNx sites under aminoanthraquinone increases the selectivity to H2 O2 from below 55% to above 80% over a wide potential range. Spectroscopy characterization and density functional theory calculations indicate that isolated NiNx sites are confined within a nanochannel formed between the molecule and the carbon support. The confinement reduces the thermodynamic barrier for OOH* desorption versus further dissociation, thus increasing the selectivity to H2 O2 . It is revealed how tailoring noncovalent interactions beyond the binding site can empower electrocatalysts for the direct synthesis of H2 O2 through oxygen reduction. |
---|