Coherent forward scattering peak and multifractality

It has recently been shown that interference effects in disordered systems give rise to two non-trivial structures: the coherent backscattering (CBS) peak, a well-known signature of interference effects in the presence of disorder, and the coherent forward scattering (CFS) peak, which emerges whe...

全面介紹

Saved in:
書目詳細資料
Main Authors: Martinez, Maxime, Lemarié, G., Georgeot, Bertrand, Miniatura, Christian, Giraud, Olivier
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/160712
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:It has recently been shown that interference effects in disordered systems give rise to two non-trivial structures: the coherent backscattering (CBS) peak, a well-known signature of interference effects in the presence of disorder, and the coherent forward scattering (CFS) peak, which emerges when Anderson localization sets in. We study here the CFS effect in the presence of quantum multifractality, a fundamental property of several systems, such as the Anderson model at the metal-insulator transition. We focus on Floquet systems, and find that the CFS peak shape and its peak height dynamics are generically controlled by the multifractal dimensions $D_1$ and $D_2$, and by the spectral form factor. We check our results using a 1D Floquet system whose states have multifractal properties controlled by a single parameter. Our predictions are fully confirmed by numerical simulations and analytic perturbation expansions on this model. Our results, which we believe to be generic, provide an original and direct way to detect and characterize multifractality in experimental systems.