Robust semi-device-independent certification of all pure bipartite maximally entangled states via quantum steering

The idea of self-testing is to render guarantees concerning the inner workings of a device based on the measurement statistics. It is one of the most formidable quantum certification and benchmarking schemes. Recently it was shown by Coladangelo et. al. (Nat Commun 8, 15485 (2017)) that all pure...

Full description

Saved in:
Bibliographic Details
Main Authors: Shrotriya, Harshank, Bharti, Kishor, Kwek, Leong Chuan
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/160733
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The idea of self-testing is to render guarantees concerning the inner workings of a device based on the measurement statistics. It is one of the most formidable quantum certification and benchmarking schemes. Recently it was shown by Coladangelo et. al. (Nat Commun 8, 15485 (2017)) that all pure bipartite entangled states can be self tested in the device independent scenario by employing subspace methods introduced by Yang et. al. (Phys. Rev. A 87, 050102(R)). Here, we have adapted their method to show that any bipartite pure entangled state can be certified in the semi-device independent scenario through Quantum Steering. Analogous to the tilted CHSH inequality, we use a steering inequality called Tilted Steering Inequality for certifying any pure two-qubit entangled state. Further, we use this inequality to certify any bipartite pure entangled state by certifying two-dimensional sub-spaces of the qudit state by observing the structure of the set of assemblages obtained on the trusted side after measurements are made on the un-trusted side. As a feature of quantum state certification via steering, we use the notion of Assemblage based robust state certification to provide robustness bounds for the certification result in the case of pure maximally entangled states of any local dimension.