Adaptive transfer learning for EEG motor imagery classification with deep convolutional neural network

In recent years, deep learning has emerged as a powerful tool for developing Brain-Computer Interface (BCI) systems. However, for deep learning models trained entirely on the data from a specific individual, the performance increase has only been marginal owing to the limited availability of subject...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Kaishuo, Robinson, Neethu, Lee, Seong-Whan, Guan, Cuntai
Other Authors: School of Computer Science and Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/160766
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In recent years, deep learning has emerged as a powerful tool for developing Brain-Computer Interface (BCI) systems. However, for deep learning models trained entirely on the data from a specific individual, the performance increase has only been marginal owing to the limited availability of subject-specific data. To overcome this, many transfer-based approaches have been proposed, in which deep networks are trained using pre-existing data from other subjects and evaluated on new target subjects. This mode of transfer learning however faces the challenge of substantial inter-subject variability in brain data. Addressing this, in this paper, we propose 5 schemes for adaptation of a deep convolutional neural network (CNN) based electroencephalography (EEG)-BCI system for decoding hand motor imagery (MI). Each scheme fine-tunes an extensively trained, pre-trained model and adapt it to enhance the evaluation performance on a target subject. We report the highest subject-independent performance with an average (N=54) accuracy of 84.19% (±9.98%) for two-class motor imagery, while the best accuracy on this dataset is 74.15% (±15.83%) in the literature. Further, we obtain a statistically significant improvement (p=0.005) in classification using the proposed adaptation schemes compared to the baseline subject-independent model.