Machine learning-aided and SAT-aided cryptanalysis of symmetric-key primitives

Information security has received more and more attentions in recent decades with the rapid developments of the internet era. Since symmetric cryptographic primitives are widely used in current information systems, doing cryptanalysis of symmetric cryptographic primitives to evaluate the security is...

全面介紹

Saved in:
書目詳細資料
主要作者: Tu, Yi
其他作者: Guo Jian
格式: Thesis-Doctor of Philosophy
語言:English
出版: Nanyang Technological University 2022
主題:
在線閱讀:https://hdl.handle.net/10356/160785
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Information security has received more and more attentions in recent decades with the rapid developments of the internet era. Since symmetric cryptographic primitives are widely used in current information systems, doing cryptanalysis of symmetric cryptographic primitives to evaluate the security is becoming increasingly significant. This thesis focuses on the cryptanalysis of block ciphers and hash functions assisted by tools including automatic tools and machine learning techniques, and shows the advantages of machine learning-aided and SAT-aided cryptanalysis over pure classical cryptanalysis. Firstly, regarding Keccak-f is the permutation used in the NIST SHA-3 hash function standard, we introduce a classical algorithm to exhaustively search for 3-round trail cores of Keccak-f [1600]. Then we develop a SAT-based automatic search toolkit to obtain differential trails for Keccak-f. With the help of this tool, we present the first 6-round classical collision attack on SHAKE128. Besides, we explore using neural networks to assist classical cryptanalysis and present the first practical 13-round neural-distinguisher-based key-recovery attacks on Speck32/64, which is a lightweight block cipher designed by NSA.