Combined magnetic and porosity effects on flow of time-dependent tangent hyperbolic fluid with nanoparticles and motile gyrotactic microorganism past a wedge with second-order slip

This research explores the time-dependent heat transport phenomena for the MHD flow of nanofluids containing motile microorganisms via porous matrix. The fluid flows through a porous stretched wedge with second-order slip and Nield boundary. Different physical and geometric parameters are included t...

Full description

Saved in:
Bibliographic Details
Main Authors: Hussain, Shafiq, Ahmad, Farooq, Ayed, Hela, Malik, Muhammad Y., Waqas, Hassan, Al-Sawalha, M. Mossa, Hussain, Sajjad
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/160806
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:This research explores the time-dependent heat transport phenomena for the MHD flow of nanofluids containing motile microorganisms via porous matrix. The fluid flows through a porous stretched wedge with second-order slip and Nield boundary. Different physical and geometric parameters are included to achieve more practicable effects. The developed equations are converted into a non - dimensional form through the use of appropriate similarity functions. The mathematical formulation is built for these transmuted equations using the built-in Matlab software bvp4c. Differences in physical quantities namely skin friction coefficient -f″(0), local Nusselt number -θ′(0), Sherwood number φ′(0)and microorganism organism density -χ′(0) have also been identified under the influences of emerging parameters. Bioconvection caused by microorganisms stabilized nanomaterials, resulting in effective thermal delivery. The findings showed good consistency as compared to the current literature. The higher mixed convection parameter contributes to the quantities of flow viscosity, temperature, and nanoparticle concentration in boundary conditions. The incremented slip parameter γ precedes the flow speed. The skin friction factor -f″(0) reduces against unsteadiness parameter A, Hartree pressure gradient β, velocity ratio parameterλ, bouancy ratio parameterNr but it develops progressively when the parameters M, We, n, λ and bioconvection Rayleigh number Nc are incremented. The elaborated discussion is also presented with graphical and tabular illustrations.