Output-series modular DC-DC converter with self-voltage balancing for integrating variable energy sources
Due to its high voltage boost capability, the output-series modular dc-dc converter (OSMDC) system with multiple independent inputs is a promising solution for the integration of distributed renewable energy. However, the unequal power injection among the variable energy sources (VESs) makes the mod...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/160927 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Due to its high voltage boost capability, the output-series modular dc-dc converter (OSMDC) system with multiple independent inputs is a promising solution for the integration of distributed renewable energy. However, the unequal power injection among the variable energy sources (VESs) makes the module voltage balancing at the output stage a crucial issue for OSMDC. To solve this issue, this letter presents a new OSMDC topology based on the promising semi-dual active bridge (SDAB) converter module. Embedded non-isolated resonant dual active bridge (NRDAB) converters are constructed between the adjacent modules by adding LC branches to link the load-side active-leg midpoints of the SDABs. This configuration facilitates self-voltage balancing among the modules and retains zero-voltage switching (ZVS) characteristics of SDAB. The lab-scale experiment has been conducted to verify the operating principles and performance of the proposed OSMDC. |
---|