Self-peeling of frozen water droplets upon impacting a cold surface

Freezing of water droplets impacting a cold substrate is a commonly encountered circumstance impairing the performance and safety of various applications. Active methods of ice removal such as heating or mechanical means are energy intensive and inconvenient. Here, we report a passive ice removal me...

Full description

Saved in:
Bibliographic Details
Main Authors: Fang, Wen-Zhen, Zhu, Fangqi, Zhu, Lailai, Tao, Wen-Quan, Yang, Chun
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/160993
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Freezing of water droplets impacting a cold substrate is a commonly encountered circumstance impairing the performance and safety of various applications. Active methods of ice removal such as heating or mechanical means are energy intensive and inconvenient. Here, we report a passive ice removal method via harvesting the thermal-mechanical stress of ice, leading to the self-peeling of frozen water droplets upon impacting a cold substrate. We find that the frozen ice completely self-peels and is then easily removable from a cold hydrophobic surface whiles the ice exhibits cracking and remains firmly sticky to a hydrophilic surface. The peeling behaviors of frozen water droplets are then scrutinized by varying the subcooling degree, impact parameters and wettability. Moreover, we develop a theoretical model to characterize the peeling and bending behaviors of the ice and also provides a simple criterion to predict the occurrence of complete self-peeling, facilitating the design of anti-icing surfaces.