Color image demosaicing using progressive collaborative representation

In this paper, a progressive collaborative representation (PCR) framework is proposed that is able to incorporate any existing color image demosaicing method for further boosting its demosaicing performance. Our PCR consists of two phases: (i) offline training and (ii) online refinement. In phase (i...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Ni, Zhangkai, Ma, Kai-Kuang, Zeng, Huanqiang, Zhong, Baojiang
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: مقال
اللغة:English
منشور في: 2022
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/161038
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:In this paper, a progressive collaborative representation (PCR) framework is proposed that is able to incorporate any existing color image demosaicing method for further boosting its demosaicing performance. Our PCR consists of two phases: (i) offline training and (ii) online refinement. In phase (i), multiple training-and-refining stages will be performed. In each stage, a new dictionary will be established through the learning of a large number of feature-patch pairs, extracted from the demosaicked images of the current stage and their corresponding original full-color images. After training, a projection matrix will be generated and exploited to refine the current demosaicked image. The updated image with improved image quality will be used as the input for the next training-and-refining stage and performed the same processing likewise. At the end of phase (i), all the projection matrices generated as above-mentioned will be exploited in phase (ii) to conduct online demosaicked image refinement of the test image. Extensive simulations conducted on two commonly-used test datasets (i.e., the IMAX and Kodak) for evaluating the demosaicing algorithms have clearly demonstrated that our proposed PCR framework is able to constantly boost the performance of any image demosaicing method we experimented, in terms of the objective and subjective performance evaluations.