Corannulene-based electron acceptors: combining modular and practical synthesis with electron affinity and solubility
It is shown in this work that high electron affinity can be combined with high solubility and practical accessibility in corannulene-based electron acceptors. The electron affinity originates from the presence of three different types of electron-withdrawing groups (imide, sulfone, and trifluorometh...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/161105 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | It is shown in this work that high electron affinity can be combined with high solubility and practical accessibility in corannulene-based electron acceptors. The electron affinity originates from the presence of three different types of electron-withdrawing groups (imide, sulfone, and trifluoromethyl) on the aromatic scaffold. The imide substituent further hosts a long alkyl chain (C18 H37 ) to boast solubility in a wide range of organic solvents. The synthesis is modular and consists of three simple steps from a commonly available corannulene derivative with an overall isolated yield of 22-27 %. |
---|