Strain prediction for critical positions of FPSO under different loading of stored oil using GAIFOA-BP neural network
FPSO (floating, production, storage and offloading) units are widely used in the offshore oil and gas industry. Generally, FPSOs have excellent oil storage capacity owing to their huge oil cargo holds. The volume and distribution of stored oil in the cargo holds influence the strain level of hull gi...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/161122 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | FPSO (floating, production, storage and offloading) units are widely used in the offshore oil and gas industry. Generally, FPSOs have excellent oil storage capacity owing to their huge oil cargo holds. The volume and distribution of stored oil in the cargo holds influence the strain level of hull girder, especially at critical positions of FPSO. However, strain prediction using structural analysis tools is computationally expensive and time consuming. In this study, a prediction tool based on back-propagation (BP) neural network called GAIFOA-BP is proposed to predict the strain values of concerned positions of an FPSO model under different oil storage conditions. The GAIFOA-BP combines BP model and GAIFOA which is a combination of genetic algorithm (GA) and an improved fruit fly optimization algorithm (IFOA). Results from three benchmark tests show that the GAIFOA-BP model has a remarkable performance. Subsequently, a total of 81 sets of training data and 25 sets of testing data are obtained from experiment using fiber Bragg grating (FBG) sensors installed on the surface of an FPSO model. The numerical results show that the GAIFOA-BP is capable of predicting the strain values with higher accuracy as compared with other BP models. Finally, the reserved GAIFOA-BP model is utilized to predict the strain values under the inputs of a 10-day time series of volume and distribution of stored oil. The predicted strain results are further used to calculate the fatigue consumption of measurement points. |
---|