Minimum surface roughness using rule-based modeling of the vibratory finishing process in a high-frequency bowl system

Previous work on vibratory finishing has led to a better understanding and establishment of the mass finishing processes. Despite the sustained efforts made to date, vibratory finishing remains a field where the findings made have been based largely on empirical evidence. Through force sensor analys...

Full description

Saved in:
Bibliographic Details
Main Authors: Wong, Ben Jin, Majumdar, Ketav, Ahluwalia, Kunal, Yeo, Swee Hock
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/161131
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Previous work on vibratory finishing has led to a better understanding and establishment of the mass finishing processes. Despite the sustained efforts made to date, vibratory finishing remains a field where the findings made have been based largely on empirical evidence. Through force sensor analyses and scanning electron microscopy imaging, in this work a successful attempt has been made in uncovering the underlying science—through first principles of Newtonian physics—behind vibratory finishing, providing explanations for the observations made. Trials were carried out in a high-frequency vibratory bowl, the first of its kind in the vibratory finishing industry. Through these trials, mathematical formulations have been derived, essentially providing a reliable way for the industry to estimate the process cycle time.