Fabrication of Er:Y₂O₃ transparent ceramics for 2.7 μm mid-infrared solid-state lasers
Laser grade 7 at.% Er:Y2O3 transparent ceramics with submicron grain size were fabricated by using one-step vacuum sintering followed by hot isostatic pressing (HIPing) technique. Through studying the sintering trajectory of Er:Y2O3 ceramics, the sintering temperature zone where sufficient relative...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/161135 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Laser grade 7 at.% Er:Y2O3 transparent ceramics with submicron grain size were fabricated by using one-step vacuum sintering followed by hot isostatic pressing (HIPing) technique. Through studying the sintering trajectory of Er:Y2O3 ceramics, the sintering temperature zone where sufficient relative density (>96%), no pore-boundary separation, and sub-micron grain size (<1 μm) ceramic samples could be identified. The samples pre-sintered in this zone were readily densified by HIPing. To maximum the densification and achieve high transparency, it is critical to suppress the final-stage grain growth. After HIPing at 1520 °C, the Er:Y2O3 ceramics were fully densified without further grain growth, and exhibited in-line transmission of about 81.6% at 2000 nm. Continuous wave (CW) room temperature laser operation of the Er:Y2O3 transparent ceramic at 2.7 μm was demonstrated. |
---|