Quorum quenching altered microbial diversity and activity of anaerobic membrane bioreactor (AnMBR) and enhanced methane generation
A facultative bacterium Microbacterium sp. (QQ strain) was found significantly mitigated membrane biofouling and also increased methane production. It was found genera Nitrospira, norank-c-Bacterodetes vadinHA17, Trichococcus and family Anaerolineaceae were likely responsible for membrane biofouling...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/161200 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | A facultative bacterium Microbacterium sp. (QQ strain) was found significantly mitigated membrane biofouling and also increased methane production. It was found genera Nitrospira, norank-c-Bacterodetes vadinHA17, Trichococcus and family Anaerolineaceae were likely responsible for membrane biofouling. The presence of QQ strain increased the total abundance of fermentative and acetogenic genera by 0.61% and 379.61%, respectively, but had a minor effect on the abundance of methanogens. The increased methane production was likely due to the strengthened methanogenic activity and more available substrates. Homo-acetogenic Treponema was enriched (9.01%) in the presence of QQ strain suggesting that apart from hydrogenotrophic methanogenic pathway, extra CH4 could be also produced from the additional acetate synthesized via homo-acetogenic pathway. This study advances knowledge about the effects of QQ strain on microbial communities, microbiota biofouling behavior and anaerobic fermentation process in AnMBRs. |
---|