Flow investigation in a centrifugal pump
The alarming escalation in statistics of patients suffering and dying from cardiovascular diseases around the world raises the importance of the treatments available. The ventricular assist device is one option and its demand is on the rise due to the shortage of heart donors. Increased demand of th...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2009
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/16124 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-16124 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-161242023-03-04T19:05:53Z Flow investigation in a centrifugal pump Sim, Yi Lian. Chan Weng Kong School of Mechanical and Aerospace Engineering DRNTU::Engineering::Mechanical engineering::Fluid mechanics The alarming escalation in statistics of patients suffering and dying from cardiovascular diseases around the world raises the importance of the treatments available. The ventricular assist device is one option and its demand is on the rise due to the shortage of heart donors. Increased demand of the ventricular assist device has also resulted in the emergence of centrifugal blood pump due to its simplified design and economical cost. However, concerns of problems like haemolysis as well as thrombus formation in the leakage gaps of the centrifugal blood pump are hindering the prospects of permanent implantation. Knowledge and analysis on the leakage flow will help in the improvements of the pump design, thus reducing the effects of haemolysis and thrombus formation. A computational fluid dynamics analysis of a centrifugal blood pump model using ANSYS CFX 11.0 was conducted in this study. The leakage flow characteristics of the pump model with impeller rotating at 2000 rpm were investigated. Four parallel gaps with sizes ranging from 0.2mm to 0.5mm were employed in investigation. The pump performance was reported to be independent of the gap size as all four curves generated using the results obtained from the four gap sizes collapsed into a single curve. Leakage flow rate increases with increasing gap sizes as well as throttling effects. A higher leakage flow rate was noted at the front leakage gap with reference to the rear leakage gap due to the presence of washout holes. Besides a higher leakage flow rate, a greater pressure difference is also experienced at the front leakage gap. Maximum pressure difference was reported at the region near the throat of the pump and pressure difference was found to decrease with increasing operating flow rate. Bachelor of Engineering 2009-05-21T04:52:19Z 2009-05-21T04:52:19Z 2009 2009 Final Year Project (FYP) http://hdl.handle.net/10356/16124 en Nanyang Technological University 65 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Mechanical engineering::Fluid mechanics |
spellingShingle |
DRNTU::Engineering::Mechanical engineering::Fluid mechanics Sim, Yi Lian. Flow investigation in a centrifugal pump |
description |
The alarming escalation in statistics of patients suffering and dying from cardiovascular diseases around the world raises the importance of the treatments available. The ventricular assist device is one option and its demand is on the rise due to the shortage of heart donors. Increased demand of the ventricular assist device has also resulted in the emergence of centrifugal blood pump due to its simplified design and economical cost. However, concerns of problems like haemolysis as well as thrombus formation in the leakage gaps of the centrifugal blood pump are hindering the prospects of permanent implantation. Knowledge and analysis on the leakage flow will help in the improvements of the pump design, thus reducing the effects of haemolysis and thrombus formation.
A computational fluid dynamics analysis of a centrifugal blood pump model using ANSYS CFX 11.0 was conducted in this study. The leakage flow characteristics of the pump model with impeller rotating at 2000 rpm were investigated. Four parallel gaps with sizes ranging from 0.2mm to 0.5mm were employed in investigation.
The pump performance was reported to be independent of the gap size as all four curves generated using the results obtained from the four gap sizes collapsed into a single curve. Leakage flow rate increases with increasing gap sizes as well as throttling effects. A higher leakage flow rate was noted at the front leakage gap with reference to the rear leakage gap due to the presence of washout holes.
Besides a higher leakage flow rate, a greater pressure difference is also experienced at the front leakage gap. Maximum pressure difference was reported at the region near the throat of the pump and pressure difference was found to decrease with increasing operating flow rate. |
author2 |
Chan Weng Kong |
author_facet |
Chan Weng Kong Sim, Yi Lian. |
format |
Final Year Project |
author |
Sim, Yi Lian. |
author_sort |
Sim, Yi Lian. |
title |
Flow investigation in a centrifugal pump |
title_short |
Flow investigation in a centrifugal pump |
title_full |
Flow investigation in a centrifugal pump |
title_fullStr |
Flow investigation in a centrifugal pump |
title_full_unstemmed |
Flow investigation in a centrifugal pump |
title_sort |
flow investigation in a centrifugal pump |
publishDate |
2009 |
url |
http://hdl.handle.net/10356/16124 |
_version_ |
1759855768338694144 |